[发明专利]一种基于压缩感知的高斯矩阵优化方法有效
申请号: | 201210029086.1 | 申请日: | 2012-02-10 |
公开(公告)号: | CN102622331A | 公开(公告)日: | 2012-08-01 |
发明(设计)人: | 程涛 | 申请(专利权)人: | 程涛 |
主分类号: | G06F17/16 | 分类号: | G06F17/16 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 545006 广西壮族自治区柳州市*** | 国省代码: | 广西;45 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于压缩感知的高斯矩阵优化方法,属于压缩感知中测量矩阵优化技术领域,解决了高斯测量矩阵信号重构能力低的问题。本发明所述的方法:通过i次迭代对第i-1次迭代运算出的测量矩阵行向量正交规范化、列向量单位化,并以各列向量间夹角极差、各行向量间夹角极大极小值、各行向量模的极大极小值和各行各列不服从高斯分布的行数列数为判据完成高斯矩阵的优化。本发明适用于压缩感知中高斯测量矩阵的优化。 | ||
搜索关键词: | 一种 基于 压缩 感知 矩阵 优化 方法 | ||
【主权项】:
1.一种基于压缩感知的高斯矩阵优化方法,其特征是:所述方法的过程为:步骤一:生成独立同分布高斯测量矩阵Φ,其中Φ∈RM×N,M<N,M和N都是自然数,高斯矩阵Φ服从N(0,1/M)的高斯分布,设定迭代次数i的初始值为0,设定迭代误差err1,err2,err3;步骤二:以哈尔克-贝拉(Jarque-Bera)检验计算Φ各列和各行不服从高斯分布的行数Jri和列数Jci;步骤三:计算Φ各列向量间的夹角,取出其最大值θcimax和最小值θcimin,并计算两者的差值θi,计算各行向量间的夹角,取出其最大值θrimax和最小值θrimin;步骤四:计算Φ各行向量的模,取出其最大值normrimax和最小值normrimin;步骤五:正交规范化Φ各行向量,单位化Φ各列向量;步骤六:使i=i+1,判断|θi-θi-1|<err1,如果是执行步骤七,否则返回执行步骤二;步骤七:判断|θrimax-90°|<err2与|θrimin-90°|<err2,如果是执行步骤八,否则返回执行步骤二;步骤八:判断
与
如果是执行步骤九,否则返回执行步骤二;步骤九:判断Jri≤Jr0与Jci≤Jc0,如果是执行步骤十,否则返回执行步骤二;步骤十:取得优化的测量矩阵Φ。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于程涛,未经程涛许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201210029086.1/,转载请声明来源钻瓜专利网。