[发明专利]一种图像边缘近邻描述特征算子的提取方法无效
申请号: | 201010593863.6 | 申请日: | 2010-12-17 |
公开(公告)号: | CN102004917A | 公开(公告)日: | 2011-04-06 |
发明(设计)人: | 冯前进;卢振泰;阳维;陈武凡 | 申请(专利权)人: | 南方医科大学 |
主分类号: | G06K9/46 | 分类号: | G06K9/46 |
代理公司: | 广州知友专利商标代理有限公司 44104 | 代理人: | 宣国华 |
地址: | 510515 广东省广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种边缘近邻描述特征算子的提取方法,包括以下步骤:(1)取医学图像组成训练集,分割训练集中每幅图像的病灶区域;(2)对每幅图像的病灶区域的边缘进行采样,得到所有采样点特征形成的矩阵作为原始的高维特征空间;(3)压缩原始的高维特征空间的维数,得到低维特征空间;(4)在低维空间进行聚类,获得低维空间的聚类中心;(5)将低维特征矩阵的每一列看作是一个样本,统计所有样本点落在每个聚类中心的个数,则个数值排列即为新图像的边缘近邻描述特征算子。本方法实现了对一种新的图像特征——边缘近邻描述特征算子的提取方法,该特征算子体现了目标图像的边缘邻域灰度变化情况,可广泛用于图像配准、分割、检索等领域。 | ||
搜索关键词: | 一种 图像 边缘 近邻 描述 特征 算子 提取 方法 | ||
【主权项】:
一种图像边缘近邻描述特征算子的提取方法,其特征在于包括以下步骤:(1)分割训练集中每幅图像的病灶区域;(2)对每幅图像的病灶区域的边缘进行采样,得到所有采样点特征形成的矩阵作为原始的高维特征空间;(3)压缩原始的高维特征空间的维数,得到低维特征空间;(4)在低维空间进行聚类,获得低维空间的聚类中心;(5)对一幅新图像重复步骤(1)、(2)、(3)的操作,得到低维特征矩阵,将低维特征矩阵的每一列看作是一个样本,统计所有样本点落在每个聚类中心的个数,并将个数值排列作为一个向量,则所述向量即为所述新图像的边缘近邻描述特征算子。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南方医科大学,未经南方医科大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201010593863.6/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序