[发明专利]基于GSD_SVDD的模拟电路动态在线故障诊断方法有效
申请号: | 201010228687.6 | 申请日: | 2010-07-15 |
公开(公告)号: | CN101907681A | 公开(公告)日: | 2010-12-08 |
发明(设计)人: | 罗慧;王友仁;崔江 | 申请(专利权)人: | 南京航空航天大学 |
主分类号: | G01R31/316 | 分类号: | G01R31/316;G06F17/50 |
代理公司: | 南京经纬专利商标代理有限公司 32200 | 代理人: | 许方 |
地址: | 210016*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于GSD_SVDD的模拟电路动态在线故障诊断方法,属于模拟电路故障诊断技术领域。本发明方法在离线测试中使用KFCM算法计算电路每个可测节点的故障分离度值,根据故障分离度值的大小选择最优测试节点集合;在在线诊断过程中,采用基于图谱空间距离正负样本加权的SVDD单类分类方法构建故障诊断模型,并采用分层诊断方法对测试样本进行诊断,同时动态更新故障类库及诊断模型。本发明方法有效的降低了诊断模型的训练和在线诊断时间,确保了在线诊断的实时性要求,提高了故障诊断的精度,并能动态更新诊断模型参数,使诊断系统具有自适应能力。 | ||
搜索关键词: | 基于 gsd_svdd 模拟 电路 动态 在线 故障诊断 方法 | ||
【主权项】:
基于GSD_SVDD的模拟电路动态在线故障诊断方法,其特征在于,包括以下各步骤:A、从待测电路中选择最优测试节点集合;B、通过步骤A中选择的测试节点采集待测电路的正常样本和故障样本,对采集的样本进行特征提取和降维的预处理,得到训练正常样本集和故障样本集;C、对步骤B得到的训练正常样本集和故障样本集分别使用GSD_SVDD方法进行训练,得到正常类诊断模型和故障类诊断模型;所述GSD_SVDD方法是一种基于图谱空间距离正负样本加权的SVDD单类分类方法,该方法根据训练样本的图谱空间距离,将训练样本分成正、负两类,将训练样本的图谱空间距离作为权值对该训练样本进行加权,并由加权的正、负样本通过求解最小二次规划目标训练得到一个最优空间超球体,该超球体内包含正样本,而负样本位于超球体外,训练时每个样本依据图谱空间距离不同而被赋予不同的惩罚度;D、采集待测电路在线运行的测试样本,进行滤波、特征提取和降维的预处理;E、对步骤D采集的测试样本进行分层故障诊断:首先,用正常类诊断模型判断是否是故障,如果是,则采用故障类诊断模型定位故障类别,并更新样本库和诊断模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京航空航天大学,未经南京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201010228687.6/,转载请声明来源钻瓜专利网。
- 上一篇:一种房门风钩
- 下一篇:一种设有防水结构的车门锁总成