专利名称
主分类
A 农业
B 作业;运输
C 化学;冶金
D 纺织;造纸
E 固定建筑物
F 机械工程、照明、加热
G 物理
H 电学
专利下载VIP
公布日期
2023-10-24 公布专利
2023-10-20 公布专利
2023-10-17 公布专利
2023-10-13 公布专利
2023-10-10 公布专利
2023-10-03 公布专利
2023-09-29 公布专利
2023-09-26 公布专利
2023-09-22 公布专利
2023-09-19 公布专利
更多 »
专利权人
国家电网公司
华为技术有限公司
浙江大学
中兴通讯股份有限公司
三星电子株式会社
中国石油化工股份有限公司
清华大学
鸿海精密工业股份有限公司
松下电器产业株式会社
上海交通大学
更多 »
钻瓜专利网为您找到相关结果17个,建议您升级VIP下载更多相关专利
  • [实用新型]一种高探测率红外探测器-CN202321201075.7有效
  • 史珈硕;刘泰格;胡钗;朱文杰;姬午阳;胡家祺;王哲;张新宇 - 华中科技大学
  • 2023-05-18 - 2023-10-27 - G01J5/20
  • 本实用新型公开了一种高探测率红外探测器,包括真空室、纳尖组合、微通道板、镀铝荧光屏、光纤光锥和光敏元组件,纳尖组合、微通道板和镀铝荧光屏在真空环境中,红外入射窗、纳尖组合、微通道板、镀铝荧光屏和可见光输出窗沿着光路依次布置;纳尖组合包括硅基片以及纳尖阵列,所述纳尖阵列包括纳尖结构,每个纳尖结构的尖端均指向微通道板,硅基片和纳尖结构的材质均为硅晶圆;光纤光锥设置于镀铝荧光屏和光敏元组件之间,光纤光锥的一端与镀铝荧光屏连接而另一端与光敏元组件连接。本实用新型可输出倍增的电子,这些加速后的电子激励镀铝荧光屏产生较强的可见光,从而实现红外波段转换的高灵敏探测和高探测率。
  • 一种探测红外探测器
  • [实用新型]一种日盲紫外波段电子荧光激励高灵敏探测器-CN202321202813.X有效
  • 史珈硕;刘泰格;胡钗;姬午阳;胡家祺;朱文杰;王哲;张新宇 - 华中科技大学
  • 2023-05-18 - 2023-10-13 - G01J1/42
  • 本实用新型公开了一种日盲紫外波段电子荧光激励高灵敏探测器,包括真空室、纳尖组合、微通道板、镀铝荧光屏、光纤光锥和光敏元组件,所述纳尖组合、微通道板和镀铝荧光屏真空环境中,紫外入射窗、纳尖组合、微通道板、镀铝荧光屏和可见光输出窗依次布置;纳尖组合包括基片以及设置在所述基片上的纳尖阵列,所述纳尖阵列包括呈阵列分布的多个纳尖结构;每个纳尖结构的尖端均指向微通道板;光纤光锥设置于镀铝荧光屏和光敏元组件之间,光纤光锥的一端与镀铝荧光屏连接而另一端与光敏元安装板连接。本实用新型可形成倍增的电子。这些加速后的电子激励镀铝荧光屏产生较强的可见光,从而实现紫外波段转换的高灵敏探测。
  • 一种紫外波段电子荧光激励灵敏探测器
  • [发明专利]一种高探测率红外探测器及其应用-CN202310560603.6在审
  • 史珈硕;刘泰格;胡钗;朱文杰;姬午阳;胡家祺;王哲;张新宇 - 华中科技大学
  • 2023-05-18 - 2023-08-15 - G01J5/20
  • 本发明公开了一种高探测率红外探测器,包括真空室、纳尖组合、微通道板、镀铝荧光屏、光纤光锥和光敏元组件,所述纳尖组合、微通道板和镀铝荧光屏在真空环境中,红外入射窗、纳尖组合、微通道板、镀铝荧光屏和可见光输出窗沿着光路依次布置;纳尖组合包括硅基片以及纳尖阵列,所述纳尖阵列包括纳尖结构,硅基片和纳尖结构的材质均为硅晶圆;每个纳尖结构的尖端均指向微通道板;光纤光锥设置于镀铝荧光屏和光敏元组件之间,光纤光锥的一端与镀铝荧光屏连接而另一端与光敏元组件连接。本发明可输出倍增的电子,这些加速后的电子激励镀铝荧光屏产生较强的可见光,从而实现红外波段转换的高灵敏探测和高探测率。
  • 一种探测红外探测器及其应用
  • [实用新型]基于超表面光学天线的太赫兹信号探测器-CN202022401679.9有效
  • 罗俊;魏东;胡钗;张新宇 - 华中科技大学
  • 2020-10-26 - 2021-08-03 - H01L31/115
  • 本实用新型公开了一种基于超表面光学天线的太赫兹信号探测器,包括:衬底、掺杂层、二氧化硅层、超表面光学天线层、欧姆电极、肖特基电极和普通电极;其中,超表面光学天线层宽度为2~10mm,包括微米基元以及多个平面金属纳尖单元;微米基元为微米结构,形状为多边形;金属纳尖单元分布在微米基元各个边的内侧或外侧,对于入射的太赫兹信号具有局域表面等离激元特性。如此,由于纳尖单元对入射的太赫兹信号具有极强的局域表面等离激元感应能力,一旦与对应的太赫兹信号产生局域表面等离激元振荡,能够在极短时间内产生极强的响应信号;同时,本实用新型采用微纳结构,在满足较好探测性能的前提下,大大减小了太赫兹信号探测器的成本。
  • 基于表面光学天线赫兹信号探测器
  • [实用新型]基于超表面光学天线的红外太赫兹信号探测器-CN202022401590.2有效
  • 罗俊;胡钗;魏东;张新宇 - 华中科技大学
  • 2020-10-26 - 2021-07-27 - H01L31/115
  • 本实用新型公开了一种基于超表面光学天线的红外太赫兹信号探测器,探测器包括:衬底、掺杂层、二氧化硅层、超表面光学天线层、欧姆电极、肖特基电极和普通电极;超表面光学天线层宽度为0.5~10mm,并且包括分别用于探测红外信号的第一金属层和探测太赫兹信号的第二金属层,由于第一金属层和第二金属层分别对入射的红外信号和太赫兹信号波段电磁信号具有极强的局域表面等离激元感应能力,一旦与对应的信号产生局域表面等离激元振荡,其响应速度属于超高速响应,能够在极短时间内产生极强的响应信号,使得探测器能够更好地分辨红外太赫兹波段的电磁信号。此外,由于超表面光学天线的制作采用纳米工艺,使得红外太赫兹信号探测器体积很小、重量很轻。
  • 基于表面光学天线红外赫兹信号探测器
  • [实用新型]基于超表面光学天线的太赫兹射频信号探测器-CN202022401676.5有效
  • 罗俊;胡钗;魏东;张新宇 - 华中科技大学
  • 2020-10-26 - 2021-07-27 - H01L31/115
  • 本实用新型公开了一种基于超表面光学天线的太赫兹射频信号探测器,探测器包括:衬底、掺杂层、二氧化硅层、超表面光学天线层、欧姆电极、肖特基电极和普通电极;超表面光学天线层宽度为2~100mm,包括分别用于探测射频S波段、C波段或X波段信号的第一金属层和探测太赫兹信号的第二金属层,由于第一金属层和第二金属层分别对射频和太赫兹信号具有极强的局域表面等离激元感应能力,一旦与对应的信号产生局域表面等离激元振荡,其响应速度属于超高速响应,能够在极短时间内产生极强的响应信号,使得探测器能够更好地分辨太赫兹射频波段的电磁信号。此外,由于超表面光学天线的制作采用纳米工艺,使得太赫兹射频信号探测器体积很小、重量很轻。
  • 基于表面光学天线赫兹射频信号探测器
  • [实用新型]一种基于超表面光学天线的红外射频信号探测器-CN202022401720.2有效
  • 罗俊;胡钗;魏东;张新宇 - 华中科技大学
  • 2020-10-26 - 2021-06-11 - H01L31/115
  • 本实用新型公开了一种基于超表面光学天线的红外射频信号探测器,包括自下而上依次设置的衬底、掺杂层和二氧化硅层,制作于掺杂层之上与掺杂层形成肖特基接触的超表面光学天线层,制作于掺杂层之上与掺杂层形成欧姆接触的欧姆电极,以及位于二氧化硅层的上表面的肖特基电极和普通电极;超表面光学天线层是由多个彼此间隔的金属层组成的阵列结构,金属层包括第一金属层和第二金属层,第一金属层为宽度为0.5~5mm的具有周期性纳尖结构的金属纳尖阵列,第二金属层为宽度为5~100mm的金属阵列,由周期性排列的微米基元构成;超表面光学天线层对入射的红外、射频S、C或X波段的信号具有局域表面等离激元效应,能够以较小的体积完成响应速度较快的信号探测。
  • 一种基于表面光学天线红外射频信号探测器
  • [实用新型]一种基于超表面光学天线的超宽谱红外信号探测器-CN202022403206.2有效
  • 罗俊;魏东;胡钗;张新宇 - 华中科技大学
  • 2020-10-26 - 2021-05-18 - H01L31/115
  • 本实用新型公开了一种基于超表面光学天线的超宽谱红外信号探测器,属于信号探测技术领域,包括衬底、掺杂层、二氧化硅层、超表面光学天线层、欧姆电极、肖特基电极和普通电极;其中,超表面光学天线层由一个宽度为0.5~5mm的金属纳尖阵列构成,金属纳尖阵列为具有周期性纳尖结构的金属层,对于入射的电磁波具有极强的局域表面等离激元感应能力,可以与对应的红外信号产生局域表面等离激元振荡,其响应速度较高,属于超高速响应,能够在极短时间内产生极强的响应信号,从而快速探测波段为1~70um的红外信号。另外,本实用新型所提供的探测器尺寸为毫米级或亚毫米级,具有高灵敏、高速和微型化特性,可以以较小的体积实现响应速度较快的超宽谱红外信号的探测。
  • 一种基于表面光学天线超宽谱红外信号探测器
  • [实用新型]一种基于超表面光学天线的射频信号探测器-CN202022403282.3有效
  • 罗俊;魏东;胡钗;张新宇 - 华中科技大学
  • 2020-10-26 - 2021-05-18 - H01L31/115
  • 本实用新型公开了一种基于超表面光学天线的射频信号探测器,包括:自下而上依次放置的衬底、掺杂层和二氧化硅层,制作于掺杂层之上与掺杂层形成肖特基接触的超表面光学天线层,制作于掺杂层之上与掺杂层形成欧姆接触的欧姆电极,以及位于二氧化硅层的上表面的肖特基电极和普通电极;超表面光学天线层为宽度为5~100mm的金属阵列,对于入射的射频S波段、C波段或X波段的电磁信号具有极强的局域表面等离激元效应,用于探测射频S波段、C波段或X波段的信号;金属阵列为平面结构或立体结构,由周期性排列的微米基元构成;微米基元为微米结构,体积小,能够在极短时间内产生极强的响应信号,可以以较小的体积实现响应速度较快的射频波段信号的探测。
  • 一种基于表面光学天线射频信号探测器
  • [发明专利]基于超表面光学天线的红外射频信号探测器及其制备方法-CN202011157075.2在审
  • 罗俊;胡钗;魏东;张新宇 - 华中科技大学
  • 2020-10-26 - 2021-01-22 - H01L31/115
  • 本发明公开了一种基于超表面光学天线的红外射频信号探测器及其制备方法,包括自下而上依次设置的衬底、掺杂层和二氧化硅层,制作于掺杂层之上与掺杂层形成肖特基接触的超表面光学天线层,制作于掺杂层之上与掺杂层形成欧姆接触的欧姆电极,以及位于二氧化硅层的上表面的肖特基电极和普通电极;超表面光学天线层是由多个彼此间隔的金属层组成的阵列结构,金属层包括第一金属层和第二金属层,第一金属层为宽度为0.5~5mm具有周期性纳尖结构的金属纳尖阵列,第二金属层为宽度为5~100mm的金属阵列,由周期性排列的微米基元构成;超表面光学天线层对入射的红外、射频S、C或X波段的信号具有局域表面等离激元效应,能够以较小的体积完成响应速度较快的信号探测。
  • 基于表面光学天线红外射频信号探测器及其制备方法
  • [发明专利]基于超表面光学天线的红外太赫兹信号探测器及制备方法-CN202011155858.7在审
  • 罗俊;胡钗;魏东;张新宇 - 华中科技大学
  • 2020-10-26 - 2021-01-12 - H01L31/115
  • 本发明公开了一种基于超表面光学天线的红外太赫兹信号探测器及制备方法,探测器包括:衬底、掺杂层、二氧化硅层、超表面光学天线层、欧姆电极、肖特基电极和普通电极;超表面光学天线层宽度为0.5~10mm,并且包括分别用于探测红外信号的第一金属层和探测太赫兹信号的第二金属层,由于第一金属层和第二金属层分别对入射的红外信号和太赫兹信号波段电磁信号具有极强的局域表面等离激元感应能力,一旦与对应的信号产生局域表面等离激元振荡,其响应速度属于超高速响应,能够在极短时间内产生极强的响应信号,使得探测器能够更好地分辨红外太赫兹波段的电磁信号。此外,由于超表面光学天线的制作采用纳米工艺,使得红外太赫兹信号探测器体积很小、重量很轻。
  • 基于表面光学天线红外赫兹信号探测器制备方法
  • [发明专利]基于超表面光学天线的太赫兹信号探测器及其制备方法-CN202011155888.8在审
  • 罗俊;魏东;胡钗;张新宇 - 华中科技大学
  • 2020-10-26 - 2021-01-12 - H01L31/115
  • 本发明公开了一种基于超表面光学天线的太赫兹信号探测器及其制备方法,包括:衬底、掺杂层、二氧化硅层、超表面光学天线层、欧姆电极、肖特基电极和普通电极;其中,超表面光学天线层宽度为2~10mm,包括微米基元以及多个平面金属纳尖单元;微米基元为微米结构,形状为多边形;金属纳尖单元分布在微米基元各个边的内侧或外侧,对于入射的太赫兹信号具有局域表面等离激元特性。如此,由于纳尖单元对入射的太赫兹信号具有极强的局域表面等离激元感应能力,一旦与对应的太赫兹信号产生局域表面等离激元振荡,能够在极短时间内产生极强的响应信号;同时,本发明采用微纳结构,在满足较好探测性能的前提下,大大减小了太赫兹信号探测器的成本。
  • 基于表面光学天线赫兹信号探测器及其制备方法
  • [发明专利]基于超表面光学天线的太赫兹射频信号探测器及制备方法-CN202011155904.3在审
  • 罗俊;胡钗;魏东;张新宇 - 华中科技大学
  • 2020-10-26 - 2021-01-12 - H01L31/115
  • 本发明公开了一种基于超表面光学天线的太赫兹射频信号探测器及制备方法,探测器包括:衬底、掺杂层、二氧化硅层、超表面光学天线层、欧姆电极、肖特基电极和普通电极;超表面光学天线层宽度为2~100mm,包括分别用于探测射频S波段、C波段或X波段信号的第一金属层和探测太赫兹信号的第二金属层,由于第一金属层和第二金属层分别对射频和太赫兹信号具有极强的局域表面等离激元感应能力,一旦与对应的信号产生局域表面等离激元振荡,其响应速度属于超高速响应,能够在极短时间内产生极强的响应信号,使得探测器能够更好地分辨太赫兹射频波段的电磁信号。此外,由于超表面光学天线的制作采用纳米工艺,使得太赫兹射频信号探测器体积很小、重量很轻。
  • 基于表面光学天线赫兹射频信号探测器制备方法
  • [发明专利]基于超表面光学天线的超宽谱红外信号探测器及制备方法-CN202011155911.3在审
  • 罗俊;魏东;胡钗;张新宇 - 华中科技大学
  • 2020-10-26 - 2021-01-12 - H01L31/115
  • 本发明公开了一种基于超表面光学天线的超宽谱红外信号探测器及制备方法,属于信号探测技术领域,包括衬底、掺杂层、二氧化硅层、超表面光学天线层、欧姆电极、肖特基电极和普通电极;其中,超表面光学天线层由一个宽度为0.5~5mm的金属纳尖阵列构成,金属纳尖阵列为具有周期性纳尖结构的金属层,对入射的电磁波具有极强的局域表面等离激元感应能力,可以与对应的红外信号产生局域表面等离激元振荡,其响应速度较高,属于超高速响应,能够在极短时间内产生极强的响应信号,从而快速探测波段为1~70um的红外信号。另外,本发明所提供的探测器尺寸为毫米级或亚毫米级,具有高灵敏、高速和微型化特性,可以以较小的体积实现响应速度较快的超宽谱红外信号的探测。
  • 基于表面光学天线超宽谱红外信号探测器制备方法

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

400-8765-105周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top