[发明专利]一种基于稀疏特征重用的人脸特征提取网络的构建方法在审

专利信息
申请号: 202110346477.5 申请日: 2021-03-31
公开(公告)号: CN112966661A 公开(公告)日: 2021-06-15
发明(设计)人: 李春国;胡超;杨绿溪 申请(专利权)人: 东南大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62;G06N3/04;G06N3/08
代理公司: 南京瑞弘专利商标事务所(普通合伙) 32249 代理人: 徐激波
地址: 211189 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 稀疏 特征 重用 提取 网络 构建 方法
【说明书】:

发明公开了一种基于稀疏特征重用的人脸特征提取网络的构建方法,基于稀疏特征重用、混合特征融合、中心—高斯池化三个创新点,构建了一个适用于人脸特征提取的卷积神经网络。该卷积神经网络适用于各类基于深度神经网络的人脸识别算法中的特征提取操作,可以准确提取到人脸部分的低级视觉特征和高级语义特征。在公开数据集上的实验表明,本发明具有计算量小、参数量小、人脸特征提取能力强等特点,并且在类如图像分类等更一般场景中也有较强的特征提取能力。

技术领域

本发明属于计算机视觉领域,尤其涉及一种基于稀疏特征重用的人脸特征提取网络的构建方法。

背景技术

自从20世纪90年代以来,人脸识别技术就一直是计算机视觉领域的一个热点研究问题,在交通、安防、民生等领域应用广泛。在一个完整的人脸识别任务中往往包含了四个子任务:人脸检测,人脸对齐,特征提取,特征分类。其中以特征提取最为关键。当前主流的人脸识别算法往往以深度卷积神经网络为特征提取网络,并在网络训练过程中施加分类监督。然而,由于当前高性能的特征提取网络往往是基于ImageNet数据集研发,虽然适用于大规模图像分类任务,但是具有参数量大、计算量大等缺点,这往往无法满足经常需要部署到移动硬件平台的人脸识别算法的要求。因此,需要进一步研究适用于人脸识别这一特定场景且计算高效的网络结构,以提升人脸识别算法的性能和移动端部署能力。

近年来,国内外学者提出了许多新颖的卷积神经网络设计思路,这些思路主要包括残差连接,自学习结构和密集连接等。以这三者为基础的代表性网络分别是ResNet,Inception和DenseNet网络。ResNet网络通过残差连接的方式解决了单纯堆叠网络层所带来的网络性能退化问题,残差块的引入使得被残差块所连接的部分网络只需要进行难度更低的残差学习,这大大提升了网络对复杂数据的拟合能力。使用残差连接设计的网络虽然可以通过大幅度加深网络的速度来达到更好的性能,但是以逐像素相加的方式进行残差连接会带来一定程度的信息损失。Inception网络通过自学习结构的方式解决了网络设计过程中如何设计卷积核大小这一问题,对同一级别的特征采用不同大小的卷积核并行学习,每一种类型的卷积核具体学到的信息让网络自行分配,这在提升了网络性能的同时也减轻了算法研究人员的超参数设置压力。使用自学习结构设计的网络虽然可以通过大幅度加宽网络的宽度来达到更好的性能,但是存在参数量大的缺点。DenseNet网络通过密集连接的方式解决了单一特征无法全面描述物体信息这一问题,特征之间的密集连接使得深层的特征在具有丰富的语义信息的同时也包含了一定的低级信息,如边缘、颜色、纹理等信息,使用这些混合的信息更能表达物体的全貌。同时,由于DenseNet采用了不同密集块之间使用相同的特征通道数这一设计,使得网络的参数量大幅度减少。使用密集连接设计的网络虽然具有较小的参数量和较高的性能,但是在网络训练和推理过程中的频繁IO操作会带来网络收敛缓慢、推理时间长等缺点。

发明内容

本发明目的在于提供一种基于稀疏特征重用的人脸特征提取网络的构建方法,以解决上述不同类型的特征提取网络存在技术问题。

为解决上述技术问题,本发明具体的技术方案如下:

一种基于稀疏特征重用的人脸特征提取网络的构建方法,包含以下步骤:

步骤1、构建单个基本单元块,具体过程如下:

步骤1.1、由3×3卷积组提取特征;

步骤1.2、在第一组和最后一组3×3卷积组输出的特征之间采用逐元素相加和按通道级连的方式进行特征融合,达到特征重用的目的;

步骤1.3、使用1×1卷积组对特征融合后得到的特征进行通道信息整合;

步骤1.4、使用SE Block对通道整合后的特征进行深层通道重要性重组;

步骤1.5、使用单位恒等映射进行基本单元块残差学习;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110346477.5/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top