[发明专利]一种基于多头注意力机制的抗遮挡目标检测方法及设备在审
申请号: | 202011034696.1 | 申请日: | 2020-09-27 |
公开(公告)号: | CN112215271A | 公开(公告)日: | 2021-01-12 |
发明(设计)人: | 石英;毛诗淼;谢长君;张晖;苏涛 | 申请(专利权)人: | 武汉理工大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 武汉智嘉联合知识产权代理事务所(普通合伙) 42231 | 代理人: | 黄君军 |
地址: | 430070 湖*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 多头 注意力 机制 遮挡 目标 检测 方法 设备 | ||
本发明涉及一种基于多头注意力机制的抗遮挡目标检测方法及设备,方法包括:将所述训练样本输送至初始模型中,通过目标提取子网络对所述训练样本中进行特征提取,以得到多个不同尺度的特征层;将各个所述特征层以特征金字塔的结构融合,通过注意力机制子网络在所述特征金字塔的每层特征层中添加多头注意力机制,以得到各层特征层的特征响应图和注意力特征图;计算出分类损失值、回归损失值和注意力损失值;计算出整体损失值,利用所述整体损失值对所述初始模型进行训练,以得到目标检测模型;利用所述目标检测模型对待检测图像进行目标检测。本发明解决了目前无法有效减少遮挡对目标检测的影响的问题。
技术领域
本发明涉及图像处理和计算机视觉技术领域,尤其涉及一种基于多头注意力机制的抗遮挡目标检测方法、设备及存储介质。
背景技术
近年来,在图像领域,卷积神经网络被广泛应用在目标检测、语义分割、行人检测等领域。自从AlexNet大幅度提升了目标检测算法的检测精度之后,Faster-RCNN又舍弃了速度较慢的Selective Search算法,设计了与CNN权值共享的RPN,真正意义上实现了端对端训练。而FCN算法则是利用全卷积的ResNet替代Faster-RCNN常用的VGGNet,将特征图像上的特征点能够与原始输入图片之间构成映射关系,能提升对小目标的检测性能。SSD算法集成了Faster-RCNN算法的检测精度和YOLO算法的检测速度,将RPN网站中的锚点代替单一的网格化分割,使用多尺度特征向量对特征区域进行回归运算。FPN算法沿袭了SSD算法对于特征金字塔的构建基础,但是又将特征金字塔进行top-down连接,使不同尺度的特征图直接相互关联,提取更丰富的特征。Focal Loss提出一种全新结构RetinaNet以解决单阶段目标检测中正负样本比例严重失衡的问题。
尽管在目标检测领域中,各种最佳算法在各个数据集中都展现了不俗的检测效果,但是目前的算法的检测精度都会随着遮挡程度的增加而降低,经常会出现的待检测目标之间相互重合或者背景遮住待检测目标的一部分的现象。在遮挡情况下,待检测目标的目标特征不完全,这使得常用的卷积神经网络会误将待检测目标识别为背景或者识别成相邻目标的一部分,从而产生漏检现象。只有解决了遮挡问题的目标检测算法,才能在众多的应用领域中减少安全风险。
目前,处理遮挡问题的方法可分为以下3类。
(1)多遮挡情形模型集成:这类方法针对不同遮挡情形各自训练模型,然后集成这些模型来检测目标。例如,在基于部分的模型基础上,对检测结果对应的部分可视概率进行建模,然后将检测结果与概率模型进行融合,获得候选框属于目标类别的概率。或者利用深度学习表达特征的能力来训练每个部分的模型,并设计了一个部分池化层来使模型适用于更多遮挡的情形。这类方法的主要缺点在于由于需要训练多个模型,训练和测试时非常耗时。
(2)多遮挡情形联合模型:也有学者针对不同的遮挡情形训练联合模型,能加快检测速度。例如设计一个集成特征提取、DPM、抗遮挡和分类能力的深度学习模型,较原来最好算法平均错误率降低了9%。或者采用多标签学习算法来联合训练针对不同遮挡情形的检测器。实验表明,该方法不仅适用于手工设计的特征,也适用于深度学习网络提取特征。这类方法的缺点在于所针对的遮挡情形的是有限的,无法包括所有遮挡情形。
(3)通用检测框架的遮挡抑制:此类方法在目标检测网络的基础上通过设计损失和改进网络结构等方式,抑制遮挡对目标检测结果的影响。例如,通过引入Grid loss层分块计算损失,提高每部分的分辨能力进而抑制部分遮挡的情形。或者在采用RepulsionLoss计算检测框的回归损失时,不仅考虑到检测框应该靠近与其IOU最大标定框,还设计了Repulsion Loss使检测框远离其他相交的标定框和其他检测框,提高了算法在密集遮挡情形下的精度。此外,还有采用Soft-NMS算法改进传统的NMS算法,将除最佳检测框之外的所有其他对象的检测分数衰减为与检测框重叠的连续函数。此种方式算法结构复杂,而且智能抑制部分遮挡。
因此,现有技术中均无法有效地减少遮挡对目标检测的影响,抗遮挡能力均不佳。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉理工大学,未经武汉理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202011034696.1/2.html,转载请声明来源钻瓜专利网。
- 上一篇:手持风扇
- 下一篇:一种基于改进ACF的车辆行人多类别检测方法及设备