[发明专利]基于数据驱动的飞机液压泵性能变化趋势智能预测方法有效

专利信息
申请号: 202010017890.2 申请日: 2020-01-08
公开(公告)号: CN111241629B 公开(公告)日: 2023-07-14
发明(设计)人: 崔建国;李鹏程;崔霄;于明月;蒋丽英;赵雪莹;刘利秋 申请(专利权)人: 沈阳航空航天大学
主分类号: G06F30/15 分类号: G06F30/15;G06F30/27;G06F17/18;G06N3/0442;G06N3/045;G06N3/08
代理公司: 沈阳东大知识产权代理有限公司 21109 代理人: 李在川
地址: 110136 辽宁省沈*** 国省代码: 辽宁;21
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 数据 驱动 飞机 液压泵 性能 变化 趋势 智能 预测 方法
【说明书】:

发明提供一种基于数据驱动的飞机液压泵性能变化趋势智能预测方法,涉及航空航天预测技术领域。本发明首先获取飞机液压泵的回油流量性能表征参数形成初始参数集合;将性能表征参数分解为D个趋势项数据和D个细节项数据;然后将细节项数据归一化得到参数数据集合;建立细节项训练数据集,并构建细节项数据趋势预测模型;对细节项数据进行趋势预测得到细节项趋势预测结果;再建立ARIMA趋势项预测模型;对趋势项数据进行预测;最后将趋势项预测结果与细节项预测结果进行了叠加,得到飞机液压泵性能变化趋势预测结果。本方法使预测精确性和实时性都高于单一模型,能够实现对液压泵性能变化趋势的预测,有一定的工程实际意义。

技术领域

本发明涉及航空航天预测技术领域,尤其涉及一种基于数据驱动的飞机液压泵性能变化趋势智能预测方法。

背景技术

飞机液压系统是飞机上以油液为驱动介质、为飞机提供驱动力的整套装置。飞机液压泵作为液压系统动力核心元件,在长期高负载的状态下,易出现由油液污染或油液泄露导致液压系统性能出现急速下降甚至故障的情况。且由于飞机液压泵内部元件制造工艺精密,元件之间功能结构联系紧密、工作机理复杂,无法对其工作状态和性能变化进行直接监测,故采用数据驱动的分析手段成为了液压系统故障预测诊断及趋势变化分析的有效工具。采集能表征飞机液压泵性能变化趋势的有效参数,对飞机性能变化趋势进行分析,对飞机视情维修及事后保障都有重大的意义。

目前,在工程中应用较为广泛的性能趋势分析方法中,多项式拟合法模型建立较简单,预测准确度较低;人工神经网络对于数据量比较少的样本信息的适用能力较弱,网络结构不易确定且冗余过大,模型的训练时间难以把控,实时性较差;支持向量机则容易因参数的优化问题无法输出最优解。

发明内容

本发明要解决的技术问题是针对上述现有技术的不足,提供一种基于数据驱动的飞机液压泵性能变化趋势智能预测方法,本方法将长短期记忆神经网络和自回归积分滑动平均模型结合起来,使预测精确性和实时性都高于单一模型,能够实现对液压泵性能变化趋势的预测,有一定的工程实际意义。

为解决上述技术问题,本发明所采取的技术方案是:

本发明提供一种基于数据驱动的飞机液压泵性能变化趋势智能预测方法,包括如下步骤:

步骤1:获取飞机液压泵的回油流量性能表征参数,形成初始参数集合;

步骤2:采用线性分解公式对性能表征参数D个原始数据进行分解,分别得到D个趋势项数据和D个细节项数据;线性分解公式具体如下:

xt2=xt-xt1

其中:k为光滑系数,1≤k≤n,xi为原始数据序列,xt为xi原始数据序列中的当前值,t为数据序列号,n为序列号的最大值,xt1为xt分解后的趋势项数据,xt2为xt分解后的细节项数据,i=1,2,3,…n,1≤t≤n;

步骤3:细节项数据归一化,形成参数数据集合;将细节项参数数据进行归一化处理,使得归一化后的数据位于(-1,1)之间;

步骤4:对归一化后的细节项数据进行相空间重构,得到细节项训练数据集;采用训练集数据构建细节项趋势预测模型,得到细节项数据趋势预测模型;

步骤5:对细节项数据进行趋势预测,得到细节项趋势预测结果;

步骤6:构建自回归积分滑动平均趋势预测模型,即ARIMA趋势项预测模型;

步骤7:对趋势项数据进行预测;将后D-d个数据输入到步骤6构建的ARIMA趋势项预测模型中,得到趋势项预测结果;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于沈阳航空航天大学,未经沈阳航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010017890.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top