[发明专利]基于Fisher判别稀疏超限学习机的脑电分类方法在审
申请号: | 201711373996.0 | 申请日: | 2017-12-19 |
公开(公告)号: | CN108122004A | 公开(公告)日: | 2018-06-05 |
发明(设计)人: | 佘青山;陈康;席旭刚;蒋鹏 | 申请(专利权)人: | 杭州电子科技大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 杭州君度专利代理事务所(特殊普通合伙) 33240 | 代理人: | 朱月芬 |
地址: | 310018 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 学习机 超限 特征信号 脑电 稀疏 分类 字典 接口领域 任务分类 稀疏系数 信号重构 运动想象 结构化 区分性 算法 应用 | ||
1.基于Fisher判别稀疏超限学习机的脑电分类方法,其特征在于,该方法包括如下步骤:
步骤一:采用Fisher判别字典学习算法训练结构化字典;
具体是:给定{A,Y}为训练样本,其中A=[A1,A2,...,Ac],Ai表示第i类样本,c表示类别总数;Y是对应的类别标签;令D=[D1,D2,...,Dc]为A的冗余字典,其中Di表示与第i类样本相关的原子;X=[X1,X2,...,Xc]为系数矩阵,其中Xi表示与第i类样本相关的系数;根据公式(1)得到学习模型,然后进行优化求解,具体是:首先保持D不变,使用迭代投影算法更新稀疏编码稀疏矩阵X,然后把X当作常量,采用二次线性规划来更新D,如此交替循环,直至算法收敛,得出结构化字典D;
式中,r(Ai,D,Xi)表示重构误差约束和稀疏系数的可分性约束项,表示与第i类样本Ai第i类原子Di相关的系数,表示与第i类样本Ai第j类原子Dj相关的系数,||·||F表示F范数;||X||1表示稀疏约束项,其中||·||1表示l1范数;表示正则项约束项,SW(X)表示稀疏系数的类内距离,SB(X)表示稀疏系数的类间距离,其中Mi是第i类系数Xi的均值,Xi=[xi1,xi2,...,xini],M是所有系数X的均值,ni表示第i类样本个数;λ1、λ2和η分别表示不同约束项的权重;T表示转置;
步骤二:重构特征信号;
具体是:根据步骤一训练出的字典D以及系数X,重构出新的特征信号
步骤三:根据步骤二得到的新的特征信号,采用超限学习机算法求出输出层的权重矩阵;
具体是:随机初始化输入权值矩阵a=[a1,a2,…,am]T和隐层偏置b=[b1,b2,…,bm]T,得到新的隐藏层输出矩阵,如公式(3)所示;
式中,g(·)为激活函数,N为样本总数,m为隐层节点个数,am表示第m个隐层节点和所有输入节点的连接权值,bm表示第m个隐节点的阈值;接下来,更新后的损失函数为:
其中,β表示输出权重矩阵,β=[β1,β2,…,βm]T;C表示正则项系数,防止过拟合;根据Moore-Penrose原理求解公式(4)的优化问题;当N大于等于m时,式(4)的解为:
当N小于m时,式(4)的解为:
其中,I为单位矩阵;
步骤四:采用训练好的分类模型判别测试样本的类标签;
具体是:对于含有L个样本的测试数据集B,先根据训练好的字典D重构出再依据步骤三训练好的输出权重β、输入权值a以及隐层偏置b,然后采用公式(7)预测出其类别标签Ypredict;
其中,ai表示第i个隐层节点和所有输入节点的连接权值,bi表示第i个隐节点的阈值。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201711373996.0/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种基于深度神经网络的弱小目标识别方法
- 下一篇:一种临床药物层次分类的方法