[发明专利]一种句子相似度判断方法有效
申请号: | 201710109324.2 | 申请日: | 2017-02-27 |
公开(公告)号: | CN108509408B | 公开(公告)日: | 2019-11-22 |
发明(设计)人: | 沈磊;陈见耸 | 申请(专利权)人: | 芋头科技(杭州)有限公司 |
主分类号: | G06F17/27 | 分类号: | G06F17/27;G06N3/04 |
代理公司: | 11019 北京中原华和知识产权代理有限责任公司 | 代理人: | 寿宁<国际申请>=<国际公布>=<进入国 |
地址: | 310000 浙江省杭州市余杭区*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 重叠特征 矩阵 神经网络模型 句子 样本 句子相似度 词向量 向量 自然语言处理技术 相似性度量 句子合并 句子向量 相似度 登录 输出 外部 | ||
本发明公开了一种句子相似度判断方法,属于自然语言处理技术领域;方法包括:根据两个外部输入的句子样本,获取句子样本中的字词向量矩阵;提取句子样本中的重叠特征以形成重叠特征矩阵,并将字词向量矩阵与重叠特征矩阵结合作为第一神经网络模型的输入数据;根据第一神经网络模型处理得到针对句子样本的句子向量并进行操作形成一句子合并向量,并与根据重叠特征形成的重叠特征向量结合作为第二神经网络模型的输入数据;根据第二神经网络模型处理得到相似性度量并输出,以作为判断两个句子样本的相似度的依据。上述技术方案的有益效果是:解决现有技术中计算句子相似度比较依赖预训练的字/词向量的质量以及未登录词的问题。
技术领域
本发明涉及自然语言处理技术领域,尤其涉及一种句子相似度判断方法。
背景技术
在自然语言处理的技术领域中,对于两个句子之间判断相似度的应用非常广泛。现有技术中通常会采用如图1所示的以下方法来计算两个句子之间的相似度:
对于句子1和句子2,首先分别获取两个句子的字词向量矩阵并输入到深度神经网络模型中,通过深度神经网络的处理得到句子向量并进行拼接以作为分类神经网络模型的输入,最后得到两个句子的相似性度量。
上述处理方法在计算句子相似度时,由句子中的字词序列映射形成字词向量矩阵,其参数一般都会使用由语言模型预训练形成的字词向量进行初始化,因此参数质量比较依赖预训练的字词向量的质量。并且,若在进行计算时,句子中存在字词向量词典中没有的字或词(即未登录词),则会将其映射成随机向量进行计算,从而影响模型的度量效果。
发明内容
根据现有技术中存在的上述问题,现提供一种句子相似度判断方法的技术方案,旨在解决现有技术中计算句子相似度比较依赖预训练的字/词向量的质量和未登录词的问题,从而改进计算句子相似度的度量方法。
上述技术方案具体包括:
一种句子相似度判断方法,其中,通过预先训练形成一句子相似度判断模型,所述句子相似度判断模型中包括一用于处理得到句子向量的第一神经网络模型以及一用于处理得到表示句子相似度的相似性度量的第二神经网络模型;
所述句子相似度判断方法还包括:
步骤S1,根据两个外部输入的句子样本,分别获取每个所述句子样本中的字词向量矩阵;
步骤S2,分别提取每个所述句子样本中的重叠特征以形成重叠特征矩阵,并针对每个所述句子样本将对应的所述字词向量矩阵与所述重叠特征矩阵结合作为所述第一神经网络模型的输入数据;
步骤S3,根据所述第一神经网络模型分别处理得到针对每个所述句子样本的所述句子向量并进行操作形成一句子合并向量,并与根据所述重叠特征形成的重叠特征向量结合作为所述第二神经网络模型的输入数据;
步骤S4,根据所述第二神经网络模型处理得到关联于两个所述句子样本的相似性度量并输出,以作为判断两个所述句子样本的相似度的依据;
所述步骤S3中,采用所述句子向量直接相减的操作方式形成所述句子合并向量,或者采用拼接所述句子向量的操作方式形成所述句子合并向量。
优选的,该句子相似度判断方法,其中,所述步骤S1中,每个所述句子样本的字词向量矩阵包括:
每个所述句子样本的字向量矩阵;或者
每个所述句子样本的词向量矩阵;
则所述步骤S1中:
将所述句子样本切分成字序列,并将所述字序列映射成所述字向量矩阵;或者
将所述句子样本切分成词序列,并将所述词序列映射成所述词向量矩阵。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于芋头科技(杭州)有限公司,未经芋头科技(杭州)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710109324.2/2.html,转载请声明来源钻瓜专利网。