[发明专利]一种采用SURF特征和颜色特征相融合的刚体目标跟踪方法有效

专利信息
申请号: 201710080987.6 申请日: 2017-02-15
公开(公告)号: CN106934395B 公开(公告)日: 2020-06-30
发明(设计)人: 苗权;吴昊;李晗;程光;徐明宇;李锐光 申请(专利权)人: 国家计算机网络与信息安全管理中心
主分类号: G06K9/32 分类号: G06K9/32;G06K9/46
代理公司: 北京君尚知识产权代理有限公司 11200 代理人: 邱晓锋
地址: 100029*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 采用 surf 特征 颜色 融合 刚体 目标 跟踪 方法
【说明书】:

发明涉及一种采用SURF特征和颜色特征相融合的刚体目标跟踪方法。该方法包括:1)在初始图像中选定目标区域,在目标区域内提取SURF特征并建立SURF特征描述;2)在每一个以SURF特征点为中心的局部邻域内构建颜色特征;3)在当前图像到来时,首先利用颜色特征寻找初步的目标区域,之后提取SURF特征并与初始图像建立基于特征的匹配,形成匹配点对;4)根据得到的匹配点对计算得出运动参数,从而确定当前图像的目标区域,实现目标跟踪。本发明能够对目标区域的局部特征实现准确的描述和匹配,进而保证目标跟踪效果的鲁棒性、稳定性。

技术领域

本发明属于计算机视觉技术领域,具体涉及一种采用SURF特征和颜色特征相融合的刚体目标跟踪方法。

背景技术

刚体目标表面任意一点的运动都可以代表整体的运动,使得利用目标区域内的特征来描述目标运动成为可能。已有的刚体目标跟踪方法致力于提取参考图像目标区域内具有不变性的某些特征,并对提取的特征进行量化和描述,如颜色特征、纹理特征、光流特征。局部特征是指在图像区域内检测到的局部具有不变性、可重现性和特异性的特征,能够在一定程度上抵抗遮挡、尺度、旋转等复杂变化,并提供对特征的定量描述。目前,相比其他特征,局部特征在不变性和特异性方面优势愈发明显,使其更加深入的应用在目标跟踪中。在当前帧到来时,首先对整个区域提取局部特征并描述。进而,通过局部特征的匹配找到同上一目标内局部特征的候选对应集。借助随机采样一致性算法(RANSAC),去除不正确的对应特征集,估计出运动变换参数,实现目标跟踪。图1给出了基于特征的跟踪方法框图,其主要思路在于将跟踪看成是局部特征匹配问题。

目前,SURF(Speed-up Robust Feature,加速鲁棒特征)特征是应用较多且效果较为理想的局部特征之一,主要引入积分图像快速算法,并通过执行加减法运算近似得到高斯二阶微分的响应值。SURF算法主要包括特征检测和特征描述两方面。特征检测通过快速计算每个特征的尺度和主方向,并且圈定以检测点为中心的尺度旋转不变对称邻域;特征描述在该不变性邻域内进行Haar特征计算,并最终形成64维特征向量。不同图像之间的SURF特征匹配主要是通过比较特征向量之间的距离实现的。

运动模型构建是通过SURF特征匹配完成的。假设x和分别代表不同图像之间的对应SURF特征点,则二者之间有如下的关系:

其中,W(x,h)是透视变换函数,h=(h1,...h8)T是运动参数。具体表示如下:

得出运动参数后,将初始帧的目标区域边界进行相应的透视变换,得到当前帧的目标区域。

在视频中,场景经常会出现光照、遮挡、视角、仿射等一种或多种变化,对局部特征的匹配造成了严重的干扰。现有技术沿用和静态图像相同的局部特征匹配方法,无法适应发生剧烈变化的场景,也没有体现与场景连续性变化相对应的自适应性。

发明内容

视频序列中,场景经常会出现复杂变化,如尺度、旋转、光照、遮挡等,对刚体目标跟踪提出了挑战,通过什么策略能够对目标区域的局部特征实现准确的描述和匹配,进而保证目标跟踪效果的鲁棒性、稳定性,是本发明要解决的技术问题。

本发明采用的技术方案如下:

一种采用SURF特征和颜色特征相融合的刚体目标跟踪方法,其步骤包括:

1)在初始图像中选定目标区域,在目标区域内提取SURF特征并建立SURF特征描述;

2)在每一个以SURF特征点为中心的局部邻域内构建颜色特征;

3)在当前图像到来时,首先利用颜色特征寻找初步的目标区域,之后提取SURF特征并与初始图像建立基于特征的匹配,形成匹配点对;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国家计算机网络与信息安全管理中心,未经国家计算机网络与信息安全管理中心许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710080987.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top