[发明专利]基于深度核信息图像特征的人体运动跟踪方法有效

专利信息
申请号: 201310030672.2 申请日: 2013-01-27
公开(公告)号: CN103093211A 公开(公告)日: 2013-05-08
发明(设计)人: 韩红;谢福强;张红蕾;韩启强;李晓君;顾建银 申请(专利权)人: 西安电子科技大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62
代理公司: 陕西电子工业专利中心 61205 代理人: 王品华;朱红星
地址: 710071*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 深度 信息 图像 特征 人体 运动 跟踪 方法
【说明书】:

技术领域

发明属于图像处理技术领域,更进一步涉及到计算机视觉领域中实现人体运动跟踪的一种方法,可用于体育训练和动画制作,视频监控领域。

技术背景

人体运动跟踪是近二十年来计算机视觉领域的重大热点之一,人体运动跟踪在运动捕获,人机交互,视频监控等多领域获得了初步的应用,并具重大的应用前景。从视频序列中准确恢复三维人体姿态,实现人体运动跟踪是计算机视觉领域长期存在的问题。实现人体运动跟踪主要包括两步:第一步是实现对视频图像特征的准确表示,第二步是学习从视频图像特征到人体姿态的回归函数。其中最重要的就是第一步:实现对视频图像特征的准确表示。

对于一帧视频图像,人体是视频图像中的核心内容,反映视频图像的核心语义特征。对于人类来说,观看一帧图像的同时几乎可以瞬间理解其中人物的姿态,然而对于计算机,却要克服重重困难:必需要有一种有效的图像特征,作为计算机识别的接口。这种图像特征必须有效表示图像中的人物运动状态以及图像纹理,轮廓等细节信息。现有图像特征表示方法大致可以分为基于全局特征点方法和基于局部字码表的特征表示方法,如梯度直方图特征、层级化特征、形状上下文和尺度不变性特征点的方法。目前已经有很多成熟的图像特征表示方法被运用到人体特征表示和运动跟踪中。但是大部分描述人体的图像特征表示是基于轮廓和边缘信息的,在理论上不严谨,很难准确的刻画图像内部信息。这些基于边缘的图像特征表示方法还面临一个主要问题:视频图像的快速变换常沿边缘曲线不连续性跳跃,一方面会导致封闭边界的灰度不连续性模糊,另一方面也会导致纹理变化不沿几何曲线聚集。最终结果是无法有效表示图像中的几何纹理走向,不能全面刻画人在其中的姿态和特征信息,导致后期的运动跟踪和姿态恢复产生了模糊性和歧义性。

发明内容

本发明针对上述已有技术的不足,提出了一种基于深度核信息图像特征的人体运动跟踪方法,以降低图像特征提取的复杂度,提高特征的表征能力,并在图像数据分布未知情况下,通过学习先验进行准确的姿态预测。

本发明技术方案通过如下步骤实现:

(1)从原始的视频图像中获得人体关节点的三维坐标矩阵Y;

(2)提取训练视频图像的核图像特征x(U):

2a)输入待处理训练视频图像集转换为连续单幅序列图,根据图像内容,判断需要识别的主要人体目标,提取像素大小为64*192的含有人体的矩形框体,作为之后处理的训练样本图像集U;

2b)对训练样本图像集U中的像素点分别求梯度,得到每一个像素点的方向和模值其中,z为图像块中的像素点,z∈U;

2c)使用方向高斯核函数ko(·)计算不同像素点之间的角度相似度:

ko(θz,θs)=exp(-γ0||θz-θs||2),]]>

其中,γ0为方向高斯核参数,为图像块中像素点z的方向角,为图像块中像素点s的方向角,exp(·)表示求自然对数的指数函数,||·|2表示求二范数;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201310030672.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top