[发明专利]一种基于图像的铁路接触网杆柱标识信息的识别方法有效

专利信息
申请号: 201210302444.1 申请日: 2012-08-23
公开(公告)号: CN102902974A 公开(公告)日: 2013-01-30
发明(设计)人: 陈俊周;彭小江;彭强;袁萍 申请(专利权)人: 西南交通大学
主分类号: G06K9/54 分类号: G06K9/54;G06K9/62
代理公司: 成都信博专利代理有限责任公司 51200 代理人: 张澎
地址: 610031 四川省成都市*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 图像 铁路 接触 网杆柱 标识 信息 识别 方法
【说明书】:

技术领域

发明属于计算机视觉领域,具体涉及一种基于图像的接触网支柱定位、杆号检测及识别、公里标检测及识别方法。

背景技术

铁路接触网是为列车供电架设的特殊线路。截止2010年12月底,中国国内运营时速200公里以上的高速铁路里程已经达到8358公里,在建和即将兴建的高速铁路客运专线和城际铁路里程已达1.7万公里。根据中国中长期铁路网规划方案,至2012年,中国将建成42条高速铁路客运专线,基本建成以“四纵四横”为骨架的全国快速客运网,总里程1.3万公里;到2020年中国时速在200公里以上的高速铁路里程将会达到5万公里。

为了保证高速列车的安全运营,接触网需要经常巡检,目前对350km/h的高速客运专线接触网设备进行在线巡视的设备已经初步成型。然而,要对接触网的各种安全隐患进行有效检测,巡检设备需记录大量视频数据,面对海量的巡检视频数据,若仅靠人工判读工作量大、效率低、可靠性难以保障。对于出现安全隐患问题的接触网的具体位置我国铁路线路长、分布广、环境多样,如何准确高效地对巡检图像进行智能分析,降低巡检人员劳动强度、提高工作效率、保障铁路安全成为一个亟待解决的难题。

发明内容

本发明所要解决的技术问题是巡检视频图像中杆柱号及公里标的自动识别,该技术是实现铁路接触网杆柱视频图像自动检索的基础,可为日常巡检采集图像建立或更新杆柱信息管理档案,有效帮助巡检人员快速定位特定杆柱,减少人工需判读工作量、提高工作效率。

为了实现杆柱号及公里标自动识别的目的,本发明采用技术方案为:一种基于图像的铁路接触网杆柱标识信息的识别方法,对高速客运专线接触网设备进行在线巡视的连续视频图像中杆柱及其上的信息标识进行识别处理,其特征在于,包括以下处理步骤:

(1)杆柱粗定位。对相邻帧进行绝对差分后,用竖直结构核对差分图像滤波,将滤波后图像水平投影,以固定宽度统计计算出投影曲线峰值区域,此峰值区域即为杆柱物粗定位的区域R1;

(2)杆柱精定位,提取原图R1区域并进行去噪,对去噪后的图像进行二值化得到二值图像Bt(x,y),然后利用一种动态匹配的快速直线检测算法定位杆柱边缘;

(3)杆号检测及数字分割,对步骤(2)检测到杆柱左右边缘的平均斜率,对原图进行旋转得到校正后的图像,同时将检测到杆柱左右边缘进行重新定位;将重新定位的左右边缘延长至校正后原始图像的顶部和底部,杆柱左右边缘之间区域为杆柱精定位区域PROI,在此区域中利用一种纵向最长最近邻链筛选法检测杆号数字轮廓;数字轮廓的判定参数首先由人工进行初始化,之后根据数字检测和识别的情况,对其中部分参数进行动态更新;

(4)公里标检测及数字分割,根据精定位杆柱两边平均斜率,在旋转后的原图中重新调整粗定位区域为R2,对R2进行高斯滤波和自适应二值化后得到二值图BR2,在BR2中利用动态匹配的快速直线检测算法进行公里标检测,之后利用自适应二值化和直接二值化数字轮廓检测双向验证方法对公里标数字精确定位和分割;

(5)杆号及公里标数字的离线训练和在线识别。对分割的0~9数字二值图像进行归一化,然后分块统计前景像素个数并串联组成特征,利用多输出神经网络作为分类器进行数字训练和识别。

采用本发明基于图像的铁路接触网杆柱号及公里标实时识别方法,能够实时地对铁路接触网巡检图像进行自动杆号及公里标识别,该技术是实现铁路接触网杆柱视频图像自动检索的基础,可有效帮助巡检人员快速定位特定杆柱,减少人工需判读的图像数量、提高工作效率。

附图说明

图1铁路接触网巡视图像

图2本发明方法总体框图

图3本发明杆柱粗定位算法流程图

图4本发明杆柱精定位算法流程图

图5本发明杆号定位及数字分割算法流程图

图6本发明公里标定位及数字分割算法流程图。

具体实施方式

为便于对本发明的细节作更为清楚的介绍,对本发明主要步骤详述如下:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西南交通大学,未经西南交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201210302444.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top