[发明专利]一种面向高光谱图像的深度空谱子空间聚类方法有效
申请号: | 202011026917.0 | 申请日: | 2020-09-25 |
公开(公告)号: | CN112215267B | 公开(公告)日: | 2022-11-01 |
发明(设计)人: | 彭勃;姚宇轩;雷建军;李鑫宇;秦天一;石雅南 | 申请(专利权)人: | 天津大学 |
主分类号: | G06V10/762 | 分类号: | G06V10/762;G06V10/772;G06V10/774 |
代理公司: | 天津市北洋有限责任专利代理事务所 12201 | 代理人: | 李林娟 |
地址: | 300072*** | 国省代码: | 天津;12 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种面向高光谱图像的深度空谱子空间聚类方法,包括:构建多尺度编码器网络以提取不同尺度像素块的多尺度空谱特征,编码器网络利用M层2D卷积操作提取不同尺度像素块的空谱特征表示;基于多尺度空谱特征表示构建协同约束的多尺度自表达层,各自表达层以各像素块的空谱特征表示为字典,通过像素块空谱特征表示间的相互表达重建各像素块特征;引入多尺度解码器网络,所述多尺度解码器网络利用M层2D反卷积操作重建出输入的像素块;构建由单一尺度自表达损失函数、不同尺度间自表达相似性损失函数、重建损失函数组成的总体损失函数;基于总体损失函数训练模型,以获得各自表达层参数矩阵,进而获取到最终的自表达重建系数矩阵以此计算相似度矩阵,获取最终聚类结果。 | ||
搜索关键词: | 一种 面向 光谱 图像 深度 谱子 空间 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202011026917.0/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序