[发明专利]一种基于生成对抗网络的高隐藏中毒攻击的防御方法及应用有效

专利信息
申请号: 201910808010.0 申请日: 2019-08-29
公开(公告)号: CN110598400B 公开(公告)日: 2021-03-05
发明(设计)人: 陈晋音;朱伟鹏;苏蒙蒙;郑海斌 申请(专利权)人: 浙江工业大学
主分类号: G06F21/55 分类号: G06F21/55;G06N3/04;G06N3/08;G06K9/00
代理公司: 杭州天勤知识产权代理有限公司 33224 代理人: 曹兆霞
地址: 310014 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于生成对抗网络的高隐藏中毒攻击的防御方法,包括:构建生成器训练体系,包括生成器G、检测器D,检测器FCD;构建生成器G、检测器D、检测器FCD的损失函数Gloss,Dloss,Floss;利用损失函数Gloss和Dloss交替训练生成器G和检测器D;同时,利用损失函数Floss训练生成器G,获得训练好的生成器G;利用生成器G生成大量的对抗样本,将对抗样本结合待攻击样本,重新训练检测器FCD,获得训练好的检测器FCD,将攻击目标样本输入至训练好的检测器FCD,输出攻击目标样本的置信度;根据输出的置信度确定中毒攻击现象的严重性,采用不同防御措施。该防御方法能够防御中毒攻击。
搜索关键词: 一种 基于 生成 对抗 网络 隐藏 中毒 攻击 防御 方法 应用
【主权项】:
1.一种基于生成对抗网络的高隐藏中毒攻击的防御方法,包括以下步骤:/n构建生成器训练体系,该生成器训练体系包括生成对抗样本的生成器G、分辨对抗样本和待攻击样本的检测器D,以及分辨生成对抗样本和攻击目标样本的检测器FCD,生成器G和检测器D组成生成对抗网络,其中,生成器G的输入为待攻击样本、攻击目标样本以及扰动noise,输出为生成对抗样本;检测器D的输入为待攻击样本和生成对抗样本,其输出为待攻击样本和生成对抗样本的置信度;检测器FCD的输入为攻击目标样本和生成对抗样本,其输出为攻击目标样本和生成对抗样本的置信度;/n构建损失函数,根据待攻击样本和生成对抗样本的差异、生成对抗样本与攻击目标样本的差异构建生成器G的损失函数Gloss,根据待攻击样本和生成对抗样本各自的交叉熵构建检测器D的损失函数Dloss,根据攻击目标样本和生成对抗样本的置信度构建检测器FCD的损失函数Floss;/n利用损失函数Gloss和损失函数Dloss交替训练生成器G和检测器D,同时,利用损失函数Floss训练生成器G,训练结束后,获得训练好的生成器G;/n利用生成器G生成大量的对抗样本,将对抗样本结合待攻击样本,重新训练检测器FCD,获得训练好的检测器FCD,将攻击目标样本输入至训练好的检测器FCD,输出攻击目标样本的置信度;/n根据输出的置信度,观察中毒攻击效果,根据中毒攻击现象的严重性,采用不同防御措施。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910808010.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top