[发明专利]基于PCA-GA-RBF的换热器污垢生长预测方法在审
申请号: | 201910236098.3 | 申请日: | 2019-03-27 |
公开(公告)号: | CN110490351A | 公开(公告)日: | 2019-11-22 |
发明(设计)人: | 蒋宁;范伟;谢小东;郭风元;徐英杰 | 申请(专利权)人: | 浙江工业大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q10/06;G06N3/04;G06N3/08;G06N3/12 |
代理公司: | 33241 杭州斯可睿专利事务所有限公司 | 代理人: | 王利强<国际申请>=<国际公布>=<进入 |
地址: | 310014 浙江省*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于PCA‑GA‑RBF的换热器污垢生长预测方法,包括以下步骤:步骤1.构建最佳的换热器污垢训练样本;步骤2.构建基于GA‑RBF的人工神经网络预测模型,确定RBF人工神经网络预测模型的输入层神经元个数、隐含层神经元个数以及输出神经元个数;步骤3.利用遗传算法对RBF人工神经网络预测模型的初始参数值进行优化,获得RBF人工神经网络预测模型的初始参数值;用遗传算法来优化RBF网络的隐节点中心和宽度参数;步骤4.利用优化好的RBF人工神经预测模型的初始参数值,带入RBF人工神经网络预测模型,采用正交最小二乘法调整RBF的隐含层节点中心位置和权值。本发明学习速度快、精度较高。 | ||
搜索关键词: | 预测模型 节点中心 遗传算法 换热器 隐含层 污垢 构建 人工神经网络预测 优化 神经元 输入层神经元 输出神经元 最小二乘法 宽度参数 人工神经 训练样本 正交 生长 预测 学习 | ||
【主权项】:
1.一种基于PCA-GA-RBF的换热器污垢生长预测方法,其特征在于,所述方法包括以下步骤:/n步骤1.利用石化生产中采集到的流量、温度、压力、污垢热阻和物性参数的历史数据,通过主成分分析方法PCA,对采集到的数据进行降维处理,通过少数几个主因素来反应影响污垢生成的复杂内部规律,重新组合一组新的互相无关的数据组,然后构建最佳的换热器污垢训练样本;/n1.1)假设原始数据集W有n×m维数据;/n /n1.2)原始数据标准化,为了消除量纲的干扰,在主成分分析中采用下式进行处理:/n /n1.3)求相关系数矩阵R/nR=(rjk)m×m/n /n1.4)求相关系数矩阵R的特征值、特征向量和贡献率;/nR·x=λ·x/n1.5)每一个新因子对应方差所占的百分比 表示该变量在所有变量中的相对地位,对该系统综合的贡献,故称为贡献率,由贡献率求得累积贡献率用来表示信息的含量;/n1.6)确定主成分的个数K,根据“累积贡献率大于85%”原则和 准则,选取最佳的主因素,组成最好的数据组;/n步骤2.构建基于GA-RBF的人工神经网络预测模型,确定RBF人工神经网络预测模型的输入层神经元个数、隐含层神经元个数以及输出神经元个数;/n步骤3.利用遗传算法对RBF人工神经网络预测模型的初始参数值进行优化,获得RBF人工神经网络预测模型的初始参数值,其中,RBF人工神经网络参数包括连接权值W、高斯函数中心向量C和基宽向量B;用遗传算法来优化RBF网络的隐节点中心和宽度参数,其连接权值采用正则最小二乘法确定;/n步骤4.利用优化好的RBF人工神经预测模型的初始参数值,带入RBF人工神经网络预测模型,采用正交最小二乘法调整RBF的隐含层节点中心位置和权值。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910236098.3/,转载请声明来源钻瓜专利网。
- 上一篇:一种实验室测试排期管理系统及方法
- 下一篇:一种城市教育服务设施评价优化方法
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理