[发明专利]一种基于复杂加权软件网络的软件缺陷预测方法有效
申请号: | 201710984718.2 | 申请日: | 2017-10-20 |
公开(公告)号: | CN107665172B | 公开(公告)日: | 2020-08-11 |
发明(设计)人: | 危胜军;何涛;单纯;胡昌振 | 申请(专利权)人: | 北京理工大学 |
主分类号: | G06F11/36 | 分类号: | G06F11/36;G06N7/00;G06N20/00 |
代理公司: | 北京理工大学专利中心 11120 | 代理人: | 高燕燕 |
地址: | 100081 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出一种基于复杂加权软件网络图的软件缺陷预测方法,能够提高针对大规模复杂软件的缺陷预测精度。包括以下步骤:步骤一、针对所预测的软件,建立复杂加权软件网络图;步骤二、确定步骤一建立的复杂加权软件网络图中每个节点的网络属性值;步骤三、从公开的软件缺陷库中搜集针对该预测软件的所有软件缺陷,建立该软件的历史缺陷库,并在历史缺陷库中标明每个软件模块的缺陷标签;骤四、将步骤二中计算确定的针对每个节点的网络属性值作为机器学习算法的输入,将步骤三中标明的缺陷标签作为机器学习算法的输出,对机器学习算法进行训练和测试,根据机器学习算法的性能评价指标确定性能最优的预测模型。 | ||
搜索关键词: | 一种 基于 复杂 加权 软件 网络 缺陷 预测 方法 | ||
【主权项】:
一种基于复杂加权软件网络的软件缺陷预测方法,其特征在于,包括以下步骤:步骤一、针对所预测的软件,以软件源代码模块为网络图的节点,软件源代码模块间的依赖关系为边,建立复杂加权软件网络图;步骤二、确定步骤一建立的复杂加权软件网络图中每个节点的网络属性值;步骤三、从公开的软件缺陷库中搜集针对该预测软件的所有软件缺陷,建立该软件的历史缺陷库,并在历史缺陷库中标明每个软件源代码模块的缺陷标签;步骤四、将步骤二中计算确定的针对每个节点的网络属性值作为机器学习算法的输入,将步骤三中标明的缺陷标签作为机器学习算法的输出,对机器学习算法进行训练和测试,根据机器学习算法的性能评价指标确定性能最优的预测模型;步骤五:将步骤四中获得的性能最优的预测模型应用于新的软件模块进行缺陷预测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工大学,未经北京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710984718.2/,转载请声明来源钻瓜专利网。
- 上一篇:盐水分离压滤机自清洗装置
- 下一篇:盐水分离压滤机反吹装置