[发明专利]一种基于生成对抗网络的逐层更新算法有效

专利信息
申请号: 201710579117.3 申请日: 2017-07-17
公开(公告)号: CN107590530B 公开(公告)日: 2020-09-22
发明(设计)人: 周智恒;李立军 申请(专利权)人: 华南理工大学
主分类号: G06N3/04 分类号: G06N3/04;G06N3/08
代理公司: 广州市华学知识产权代理有限公司 44245 代理人: 罗观祥;李本祥
地址: 510640 广*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于生成对抗网络的逐层更新算法,属深度学习神经网络领域,包括以下步骤:S1、构造深度卷积生成式对抗网络DCGAN模型;S2、输入图像数据集,对DCGAN模型进行训练;S3、记录图像生成器逐层转置卷积得到的特征图;S4、记录图像判别器逐层卷积得到的特征图;S5、比较特征图的差值,用梯度下降方法对图像生成器的权值参数进行更新。传统方法只关注图像生成器生成图像的最终结果,导致图像生成器需要通过更多的训练时间才能学习到数据集的特征,同时无法准确学习到数据集中特征的细节;而本方法逐层地对图像生成器学习到的特征进行调整,既减小了训练时间,又能够让图像生成器学习到的图像特征更加精确。
搜索关键词: 一种 基于 生成 对抗 网络 更新 算法
【主权项】:
一种基于生成对抗网络的逐层更新算法,其特征在于,所述动态调整算法包括下列步骤:S1、构造深度卷积生成式对抗网络DCGAN模型,该DCGAN模型包含记录图像生成器和记录图像判别器,采用交叉熵函数作为双方的损失函数;S2、输入图像数据集,对所述DCGAN模型进行训练;S3、所述记录图像生成器逐层转置卷积得到第一特征图;S4、所述记录图像判别器逐层卷积得到第二特征图;S5、比较所述第一特征图和所述第二特征图的差值,利用梯度下降方法对所述记录图像生成器的权值参数进行更新。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710579117.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top