[发明专利]一种疾病相关的心电图特征选择方法有效

专利信息
申请号: 201310403000.1 申请日: 2013-09-06
公开(公告)号: CN103632162A 公开(公告)日: 2014-03-12
发明(设计)人: 张战成;董军 申请(专利权)人: 中国科学院苏州纳米技术与纳米仿生研究所
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 深圳市科进知识产权代理事务所(普通合伙) 44316 代理人: 宋鹰武;沈祖锋
地址: 215123 江苏省*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供的心电图特征选择方法,将心电图分为NSVF四类分类系统,并将NSVF四类分类系统分解为NvS,NvV,NvF,SvV,SvF,VvF六个二分类器,在上述每个二分类器中,对每个特征按得分高低进行排序并形成候选特征集合,再从每个二分类器选择最优特征子集,依据最优特征子集对待测心电图样本进行预测,得到待测心电图样的类别。本发明提供的心电图特征选择方法,将特征得分由高到低排序后形成特征子集,并从每个二分类器选择最优特征子集,采用最优特征子集对待测心电图样本进行预测,得到待测心电图样的类别,提高了预测精度。
搜索关键词: 一种 疾病 相关 心电图 特征 选择 方法
【主权项】:
一种疾病相关的心电图特征选择方法,其特征在于,包括下述步骤: 步骤S110:依据AAMI评价标准,将心电图分为NSVF四类分类系统; 步骤S120:基于OvO的规则,将所述NSVF四类分类系统分解为NvS,NvV,NvF,SvV,SvF,VvF六个二分类器; 步骤S130:在上述每个二分类器中,对每个特征按得分高低进行排序; 步骤S140:上述得分由高到低排序后的所有特征子集形成候选特征集合; 步骤S150:使用SVM分类器训练上述每个二分类器,并从每个二分类器选择最优特征子集;及 步骤S160:所述最优特征子集对待测心电图样本进行预测,得到所述待测心电图样的类别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院苏州纳米技术与纳米仿生研究所,未经中国科学院苏州纳米技术与纳米仿生研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201310403000.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top