[发明专利]基于深度学习的织物瑕点智能检测方法在审

专利信息
申请号: 202210445348.6 申请日: 2022-04-26
公开(公告)号: CN114742809A 公开(公告)日: 2022-07-12
发明(设计)人: 陈伟杰;徐敏彰;谢森时;陈彦榕;陈冰;叶彬雅 申请(专利权)人: 浙江工业大学之江学院
主分类号: G06T7/00 分类号: G06T7/00;G06T3/60;G06T7/10;G06V10/26;G06V10/40;G06V10/24;G06V10/774;G06V10/82;G06K9/62;G06N3/04;G06N3/08
代理公司: 杭州鼎乎专利代理事务所(普通合伙) 33377 代理人: 黄勇
地址: 312030 浙江省绍*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度学习的织物瑕点智能检测方法,涉及纺织品技术领域。本发明包括如下模型训练步骤:步骤1,收集关于织物瑕点的图片,对原图片裁剪旋转等方式操作,主要是对于数据集中较少的类别进行增强使图片数量尽可能平衡,将所有图片按比例分为训练集和验证集。本发明为了防止过拟合,利用裁剪旋转等方式对于较少数量的瑕疵样本进行了数据增强,更有效地提高模型的性能,从而实现准确的预测。本发明基于yolo5‑lite模型,根据织物缺陷判断的特征巧妙地确定了隐含层数数目、各层神经元的数目以及网络参数,也即构建了一个适合检测织物好次的卷积神经网络模型。为具有高准确率的织物瑕疵识别提供了可能。
搜索关键词: 基于 深度 学习 织物 智能 检测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学之江学院,未经浙江工业大学之江学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202210445348.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top