[发明专利]多标签分类模型训练方法和设备在审

专利信息
申请号: 201910084518.0 申请日: 2019-01-29
公开(公告)号: CN109886143A 公开(公告)日: 2019-06-14
发明(设计)人: 马永培;熊健皓;赵昕;和超;张大磊 申请(专利权)人: 上海鹰瞳医疗科技有限公司
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62
代理公司: 北京华仁联合知识产权代理有限公司 11588 代理人: 苏雪雪
地址: 200000 上海市*** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种多标签分类模型训练方法,包括:利用多标签分类模型对样本进行分类得到输出向量,所述输出向量用于表示各种具体类别,所述样本具有第一标签和第二标签,所述第一标签用于表示所述样本的各种具体类别,所述第二标签用于表示所述样本的各种合并类别,其中所述合并类别是根据部分所述具体类别确定的;对所述输出向量进行处理得到合并向量,所述合并向量用于表示至少一种合并类别;根据所述输出向量和所述第一标签确定第一损失值,以及根据所述合并向量和所述第二标签确定第二损失值;根据所述第一损失值和所述第二损失值确定第三损失值;向所述多标签分类模型反馈所述第三损失值以使其调整自身参数。
搜索关键词: 标签分类 输出向量 合并 样本 标签 向量 标签确定 模型训练 方法和设备 类别确定 反馈 分类
【主权项】:
1.一种多标签分类模型训练方法,其特征在于,包括:利用多标签分类模型对样本进行分类得到输出向量,所述输出向量用于表示各种具体类别,所述样本具有第一标签和第二标签,所述第一标签用于表示所述样本的各种具体类别,所述第二标签用于表示所述样本的各种合并类别,其中所述合并类别是根据部分所述具体类别确定的;对所述输出向量进行处理得到合并向量,所述合并向量用于表示至少一种合并类别;根据所述输出向量和所述第一标签确定第一损失值,以及根据所述合并向量和所述第二标签确定第二损失值;根据所述第一损失值和所述第二损失值确定第三损失值;向所述多标签分类模型反馈所述第三损失值以使其调整自身参数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海鹰瞳医疗科技有限公司,未经上海鹰瞳医疗科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910084518.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top