主分类
A 农业
B 作业;运输
C 化学;冶金
D 纺织;造纸
E 固定建筑物
F 机械工程、照明、加热
G 物理
H 电学
专利下载VIP
公布日期
2020-02-14 公布专利
2020-02-11 公布专利
2020-02-07 公布专利
2020-02-04 公布专利
2020-01-31 公布专利
2020-01-24 公布专利
2020-01-21 公布专利
2020-01-17 公布专利
2020-01-14 公布专利
2020-01-10 公布专利
更多 »
专利权人
国家电网公司
华为技术有限公司
浙江大学
中兴通讯股份有限公司
三星电子株式会社
中国石油化工股份有限公司
清华大学
鸿海精密工业股份有限公司
松下电器产业株式会社
上海交通大学
更多 »

一种基于BP神经网络进行流量识别的方法有效

申请号: CN201410382172.X 文献下载
申请日: 2014-08-06 公开/公告日: 2014-11-12
公开/公告号: CN104144089A 主分类号: H04L12/26
申请/专利权人: 山东大学
发明/设计人: 刘琚;王晓明;郑丽娜;彭寿钧;郭志鑫;马衍庆;孙国霞
分类号: H04L12/26
搜索关键词: 一种 基于 bp 神经网络 进行 流量 识别 方法
 
我不想注册,点击直接下载立即登录,下载文献升级会员,免费下载

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

 
地址: 250100 山*** 国省代码: 山东;37
代理公司: 济南圣达知识产权代理有限公司 37221 代理人: 李健康
【权利要求书】:

1.一种基于BP神经网络的网络应用实时识别方法,包括BP神经网络的离线训练和在线实时识别两部分,该方法包括以下步骤:

BP神经网络的离线训练部分:

步骤1:在不同网络状况和不同时间段对网络流量进行抓包采集;

步骤2:获取样本集,对网络数据包的包数、包长、IP地址、传输协议以及上下行流量比进行统计;

步骤3:在获取的样本集中进行抽样,得到网络应用正常运行的样本;

步骤4:获取特征值,根据时间窗口法,从任意时间点开始,设定一段时间,根据该段时间内连续采集的网络流量与平均值的偏离程度,将高于平均值1.6倍的流量称为“峰值区”,处于平均值0.6~1.4倍区间的流量称为“稳定区”,由此时间段内的网络流量生成多种特征值;

步骤5:采用粒子群算法优化初始化权值,用BP神经网络的方法对得到的特征值进行训练学习,生成训练样本集;

BP神经网络的网络应用在线实时识别部分:

步骤1:在不同网络状况和不同时间段对网络流量进行采集;

步骤2:获取样本集,对网络数据包的包数、包长、IP地址、传输协议以及上下行流量比进行统计;

步骤3:采用BP神经网络的离线训练部分的步骤(4)相同的方法生成多种特征值;

步骤4:将特征值作为BP神经网络的输入,根据样本训练集的结果进行分类识别从而得到识别结果。

2.如权利要求1所述的基于BP神经网络的网络应用实时识别方法,其特征是:离线训练部分的步骤4和在线实时识别部分的步骤3中的多种特征值包括:下行包数,上行包数,下行数据量,上行数据量,下、上行包数比,下、上行数据量比,下、上行包数方差比,下、上行数据量方差比,下行中大数据量的IP数目,峰值区内数据量的比重,稳定区内样本数目的比重。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
我不想注册,点击直接下载立即登录,下载文献升级会员,免费下载

本文链接:http://www.vipzhuanli.com/pat/books/201410382172.X/1.html,转载请声明来源钻瓜专利网。

专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

400-8765-105周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top
定制专利/购买专利

行业大牛为您服务 快来咨询~

4008765105 / 022-60709568